NOTCH activity differentially affects alternative cell fate acquisition and maintenance
نویسندگان
چکیده
The pituitary is an essential endocrine gland regulating multiple processes. Regeneration of endocrine cells is of therapeutic interest and recent studies are promising, but mechanisms of endocrine cell fate acquisition need to be better characterised. The NOTCH pathway is important during pituitary development. Here, we further characterise its role in the murine pituitary, revealing differential sensitivity within and between lineages. In progenitors, NOTCH activation blocks cell fate acquisition, with time-dependant modulation. In differentiating cells, response to activation is blunted in the POU1F1 lineage, with apparently normal cell fate specification, while POMC cells remain sensitive. Absence of apparent defects in Pou1f1-Cre; Rbpjfl/fl mice further suggests no direct role for NOTCH signalling in POU1F1 cell fate acquisition. In contrast, in the POMC lineage, NICD expression induces a regression towards a progenitor-like state, suggesting that the NOTCH pathway specifically blocks POMC cell differentiation. These results have implications for pituitary development, plasticity and regeneration. Activation of NOTCH signalling in different cell lineages of the embryonic murine pituitary uncovers an unexpected differential sensitivity, and this consequently reveals new aspects of endocrine lineages development and plasticity.
منابع مشابه
Dev121145 3649..3660
NOTCH signalling is an evolutionarily conserved pathway involved in intercellular communication essential for cell fate choices during development. Although dispensable for early aspects of mouse development, canonical RBPJ-dependent NOTCH signalling has been shown to influence lineage commitment during embryonic stem cell (ESC) differentiation. NOTCH activation in ESCs promotes the acquisition...
متن کاملNotch signaling: cell fate control and signal integration in development.
Notch signaling defines an evolutionarily ancient cell interaction mechanism, which plays a fundamental role in metazoan development. Signals exchanged between neighboring cells through the Notch receptor can amplify and consolidate molecular differences, which eventually dictate cell fates. Thus, Notch signals control how cells respond to intrinsic or extrinsic developmental cues that are nece...
متن کاملNeuron and sensory epithelial cell fate is sequentially determined by Notch signaling in zebrafish lateral line development.
Sensory systems are specialized to recognize environmental changes. Sensory organs are complex structures composed of different cell types, including neurons and sensory receptor cells, and how these organs are generated is an important question in developmental neurobiology. The posterior lateral line (pLL) is a simple sensory system in fish and amphibians that detects changes in water motion....
متن کاملNotch Signaling in Pancreatic Development
The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promot...
متن کاملParadigms of notch signaling in mammals.
Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal life. These proteins are involved in organogenesis during embryonic development as well as in the maintenance of homeostasis of self-renewing systems. The paradigms of Notch function, such as stem and progenitor cell maintenance, lineage specification mediated by binary cell ...
متن کامل